

Fig.7. Projection of the crystal structure along the b axis. Intermolecular short distances less than $3 \cdot 8 \AA$ are shown by broken lines.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Dawson, B. (1960). Acta Cryst. 13, 403.
Ito, S., Fuilse, Y. \& Woods, M. C. (1967). Tetrahedron Letters, 1059.
Johnson, C. K. (1965). ORTEP, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Okaya, Y. \& Ashida, T. (1967). HBLS IV, The Universal Crystallographic Computing System (I), p. 65. Japanese Crystallographic Association.
Owen, T. B. \& Hoard, J. L. (1951). Acta Cryst. 4, 172.

Fig. 8. Projection of the molecular structure along the b axis showing the ellipsoids of thermal vibration. The centres of atoms are included in the ellipsoids with 50% probability.

Sato, M., Fujise, Y. \& Ito, S. (1967). Presented at the Third Symposium on Organic Mass Spectrometry, Oct. 12th, 1967 at Kyoto. Abstract p. 25.

Crystallography of Pyrrhotite

By Bibhuti Mukherjee
Geological Survey of India, Calcutta 13, India

(Received 8 May 1968)
Pyrrhotite crystals $\left(\mathrm{Fe}_{7} \mathrm{~S}_{8}\right)$ from the sulphide ore of the Mosaboni mine, India, are found to have a monoclinic supercell, $a_{0}=11 \cdot 90, b_{0}=6 \cdot 87, c_{0}=22 \cdot 88 \AA, \beta=90^{\circ} 30^{\prime}, Z=8$ with density $4.60 \mathrm{~g} . \mathrm{cm}^{-3}$, and the space group $C 2 / c$ (or $C c$). The hexagonal supercell, $a_{0}=6 \cdot 88, c_{0}=22 \cdot 90 \AA, Z=4$ with density $4.58 \mathrm{~g} . \mathrm{cm}^{-3}$, is also observed in pyrrhotite crystals, and the space group $P 6 / m c c($ (or $P 6 c c$) has been assigned to the hexagonal phase.

Buerger (1947) proposed a hexagonal superstructure for pyrrhotite with $a=6.87, c=22.7 \AA$; this supercell has 16 times the volume of the Ni-As-type cell. Moreover, he suggested that the observed diffraction effect in precession photographs is probably due to twinned aggregates and that the true symmetry is perhaps monoclinic or orthorhombic. Bertaut (1953) postulated that
the pyrrhotite twin is composed of two monoclinic crystals, related by a 60° rotation about the pseudohexagonal c axis and he proposed a unit cell with the parameters $11 \cdot 9,6 \cdot 865,22.72 \AA, \beta=90.45^{\circ}$ (Byström, 1945) and the space group $F 2 / d$. Wuensch (1963) observed that the pyrrhotite lattice is at least dimensionally monoclinic (with $\beta=91.79^{\circ}$) and is twinned by a

2-fold rotation about [110], and that the c dimension and lattice type are uncertain because of the presence of certain non-space group extinctions in the precession photographs.

Pyrrhotite crystals were available from the sulphide ores of Mosaboni mines, Singhbum, India (Mukherjee, 1968), and a crystal fragment almost plate-like with striated faces (off an ore sample from level-19) was detached from the subparallel hexagonal platelets for single-crystal study. Rotation and Weissenberg photographs and the 15° oscillation photographs ($\mathrm{Fe} K \alpha$)
about [010] and [001] revealed pseudohexagonal symmetry, and the parameters of the monoclinic supercell were deduced as: $a=11 \cdot 90, b=6 \cdot 87, c=22 \cdot 88 \pm 0 \cdot 02 \AA$, and $\beta=90^{\circ} 30^{\prime}$ which was computed from the highangle reflexions. The conditions limiting possible reflexions are: $h k l$ with $h+k=2 n, k+l=2 n, l+h=2 n$; $h 0 l$ with $l=2 n, h=2 n, h 00$ with $h=2 n ; 0 k 0$ with $k=2 n$; $00 l$ with $l=2 n$; and this indicates the space group as one of $C 2 / c\left(C_{2 h}^{6}\right), C c\left(C_{s}^{4}\right)$. The presence of a number of weak reflexions in the pattern at the position of the non-space-group extinctions could be explained as

Table 1. Powder data of monoclinic and hexagonal pyrrhotites

Monoclinic pyrrhotite indexed with $a=11 \cdot 90, b=6 \cdot 87, c=22 \cdot 88 \AA, \beta=90^{\circ} 30^{\prime}$				
I / I_{1}	$d(\AA)$	$\sin ^{2} \theta_{\text {obs }}$	$h k l$	$\sin ^{2} \theta_{\text {calc }}$
15	5.93	0.0266	200	0.0265
30	5.73	0.0286	004	0.0287
15	$5 \cdot 26$	0.0338	202	0.0339
7	$4 \cdot 11$	0.0555	204	0.0556
15	$3 \cdot 43$	0.0796	020	0.0794
7	$3 \cdot 20$	0.0915	206	0.0916
40	2.975	0•1059	$\{400$	$\left\{\begin{array}{l}0.1059\end{array}\right.$
		0105	$\} \begin{aligned} & 220 \\ & 222\end{aligned}$	$\left\{\begin{array}{l}0.1059 \\ 0.1133\end{array}\right.$
15	$2 \cdot 865$	$0 \cdot 1141$	222	0.1133 0.1136
			008	$0 \cdot 1146$
60	$2 \cdot 634$	$0 \cdot 1350$	224	0.1350
			404	0.1355
7	$2 \cdot 562$	$0 \cdot 1428$	208	0.1420
			026	0.1437
7	$2 \cdot 340$	$0 \cdot 1712$	226	0.1710
10	$2 \cdot 250$	$0 \cdot 1851$	406	$\left(\begin{array}{l}0.1717 \\ 0.1852\end{array}\right.$
10	$2 \cdot 202$	$0 \cdot 1932$	422	$\{0.1930$
			028	$0 \cdot 1939$
100	2.057	0.2216	228	$0 \cdot 2214$
7	1.982	0.2385	408	$\left\{\begin{array}{l}0.2223 \\ 0.2382\end{array}\right.$
10	1.905	0.2582	$\left\{\begin{array}{l}0.0 .12 \\ 0.12\end{array}\right.$	$\{0.2578$
10	1.90	0.2582	0.2 .10	\{0.2584
10	1.763	$0 \cdot 3016$	428	$0 \cdot 3017$
50	1.717	$0 \cdot 3178$	$\left\{\begin{array}{l}620 \\ 040\end{array}\right.$	$\left\{\begin{array}{l}0.3176 \\ 0.3176\end{array}\right.$
			$\} \begin{gathered}040 \\ 0.0 .14\end{gathered}$	$\left\{\begin{array}{l}0.3176 \\ 0.3510\end{array}\right.$
15	1.633	$0 \cdot 3513$	$\left\{\begin{array}{l}0.0 .14 \\ 242\end{array}\right.$	$\left\{\begin{array}{l}0.3510 \\ 0.3514\end{array}\right.$
			2.2.12	$\left\{\begin{array}{l}0.3514 \\ 0.3652\end{array}\right.$
7	$1 \cdot 600$	$0 \cdot 3658$	4.0.12	$\left\{\begin{array}{l}0.3665\end{array}\right.$
			4.2.10	0.3666
15	$1 \cdot 487$	$0 \cdot 4235$	800	\} 0.4235
			440	$\left\{\begin{array}{l}0.4235\end{array}\right.$
			0.2.14	0.4303
10	1.474	$0 \cdot 4312$	442	0.4310
			802	0.4317
			048	0.4321
20	$1 \cdot 437$	$0 \cdot 4536$	444	$\left\{\begin{array}{l}0.4530 \\ 0.4534\end{array}\right.$
			4.0.14	0.4534
15	1.430	$0 \cdot 4582$	$\} \begin{gathered}804 \\ 0.0 .16\end{gathered}$	
			2.2.14	$\left\{\begin{array}{l}0.4583 \\ 0.4584\end{array}\right.$
20	1.427	$0 \cdot 4601$	248	\{ 0.4597
			4.0.14	$\{0.4603$
20	$1 \cdot 325$	0.5336	4.2.14	0.5328
			824	0.5334
			808	0.5343
15	$1 \cdot 321$	$0 \cdot 5369$	4488	\{ 0.5362
			0.2.16	\{0.5376

Hexagonal pyrrhotite indexed with

I / I_{1}	$d(\AA)$	$\sin ^{2} \theta_{\text {obs }}$	hkil	$\sin ^{2} \theta_{\text {cale }}$
10	5.94	$0 \cdot 0265$	1010	0.0264
20	5.74	0.0285	0004	0.0286
7	$5 \cdot 27$	0.0337	1012	0.0336
7	$3 \cdot 44$	0.0793	1150	0.0792
40	$2 \cdot 98$	0•1058	$20 \overline{0}$	$0 \cdot 1056$
10	$2 \cdot 87$	$0 \cdot 1136$	$\left\{\begin{array}{lllll}2 & 0 & \overline{2} & 2 \\ 0 & 0 & 0 & 8\end{array}\right.$	$\left\{\begin{array}{l}0.1127 \\ 0.1143\end{array}\right.$
50	2.64	$0 \cdot 1343$	$20 \overline{2} 4$	$0 \cdot 1342$

10	2.255	$0 \cdot 1843$	$21 \overline{3}$	$0 \cdot 1847$
7	2.207	$0 \cdot 1925$	$\left\{\begin{array}{lll}21 & 1 & 3 \\ 1 & 1 & 2\end{array}\right.$	$\left\{\begin{array}{l}0.1919\end{array}\right.$
7	2.207	$0 \cdot 1925$	$\begin{cases}112\end{cases}$	\{0.1934
100	2.064	0.2200	2028	0.2199
7	1.987	0.2373	$30 \overline{3} 0$	0.2375
7	1.909	$0 \cdot 2572$		$\left\{\begin{array}{r}0.2572 \\ 0.2577\end{array}\right.$
7	1.769	0.2993	$21 \frac{1}{1} 8$	0.2991
40	1.720	0.3167	2240	0.3167
10	1.636	$0 \cdot 3500$	$\left\{\begin{array}{lllll}0 & 0 & 0 & 14 \\ 3 & 1 & 4 & 2\end{array}\right.$	$\left\{\begin{array}{l}0.3500 \\ 0.3502\end{array}\right.$
7	$1 \cdot 606$	$0 \cdot 3632$	$\left\{\begin{array}{lllll}2 & 0 & \overline{2} & 12 \\ 2 & 1 & \overline{3} & 10\end{array}\right.$	$\left\{\begin{array}{l}0.3627 \\ 0.3633\end{array}\right.$
10	1.490	0.4220	4040	$0 \cdot 4222$
7	1.476	0.4301	$\left\{\begin{array}{lllll}1 & 1 & \overline{2} & 14 \\ 4 & 0 & 4 & 2\end{array}\right.$	$\left\{\begin{array}{l}0.4292 \\ 0.4294 \\ 0.4309\end{array}\right.$
			2248	0.4309
10	1.442	0.4507	4044	0.4508
20	$1 \cdot 433$	$0 \cdot 4564$	$\left\{\begin{array}{lllll}2 & 0 & 2 & 14 \\ 0 & 0 & 0 & 16\end{array}\right.$	$\left\{\begin{array}{l}0.4556 \\ 0.4572\end{array}\right.$
			¢ 3148	0.4573

$20 \quad 1.321 \quad 0.5366 \quad\left\{\begin{array}{llll}1 & 1 & \frac{2}{1} & 16 \\ 4 & 0 & 4 & 8\end{array} \quad \begin{cases}0.5364 \\ 0.5365\end{cases}\right.$

Table 1 (cont.)

being due to the presence of a hexagonal phase (see below) being associated as a minor intergrowth with the monoclinic phase in the crystal fragment. The value of $d(408,228)$, corresponding to $2.057 \AA$ in the powder patterns of the same crystals (Table 1), indicates that the composition of the crystal should be $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ (stoi-
chiometric, having about 46.67 atomic per cent iron; Desborough \& Carpenter, 1965). The powder patterns, taken with $\mathrm{Fe} K \alpha$ radiation in a Debye-Scherrer camera of 114.6 mm diameter, were indexed using the crystal elements obtained from single-crystal photographs. The density for the same crystals was determined by the

Berman density balance, using bromoform, as $4 \cdot 60 \pm$ $0.01 \mathrm{~g} . \mathrm{cm}^{-3}$. With the above values of axial lengths and the angle $\beta\left(V=1871 \AA^{3}\right)$, the molecular weight ($M=648$ for $\mathrm{Fe}_{7} \mathrm{~S}_{8}$) and the observed density, the number of formula units per unit cell is calculated to be $8(Z=7.998)$, and the calculated density is $4.602 \mathrm{~g} . \mathrm{cm}^{-3}$.

The rotation and Weissenberg photographs and the 15° oscillation photographs about [010] and [001] of a crystal fragment, detached from hexagonal platelets (off an ore sample from level-16), showed superstructure characteristics having a hexagonal supercell $a=6.88, c=22.90 \pm 0.02 \AA$; the high angle reflexions did not show any separation characteristic of the monoclinic system. The conditions limiting possible reflexions are : $h h 2 h l$ only with $l=2 n ; h h 0 l$ only with $l=2 n$; and $h k i l$ with no conditions except $l=2 n$; indicating the space group as one of $P 6 / m c c\left(D_{6 h}^{2}\right), P 6 c c\left(C_{6 v}^{2}\right)$. The presence of a number of weak reflexions in the patterns could be explained as being due to the monoclinic phase (see above) which was a minor intergrowth with the hexagonal phase in the crystal fragment. The density for the same crystals was determined as $4.58 \pm 0.01 \mathrm{~g} . \mathrm{cm}^{-3}$ and the number of formula units per unit cell was calculated to be $4(Z=3.998)$ from the above values of axial lengths ($V=939 \AA^{3}$), the observed density and the molecular weight $\left[M=648\right.$ for $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ although the
composition might have a slight excess of iron (Desborough \& Carpenter, 1965)]; the calculated density is $4.582 \mathrm{~g} . \mathrm{cm}^{-3}$.

The monoclinic and hexagonal pyrrhotites (superstructure types) were found to be associated mainly with chalcopyrite and pyrite in the ores of different levels (Mukherjee, 1968); the monoclinic phase was predominant in the pyrrhotite-rich ores containing pyrite as a minor constituent, and the hexagonal phase was predominant in the pyrrhotite-poor ores containing chalcopyrite and pyrite as major constituents.

The author sincerely thanks Mr G.C.Chaterji, Director General of the Geological Survey of India for his keen interest in the work, and Professor B.S.Basak of the Presidency College, Calcutta, for valuable discussions.

References

Bertaut, E. F. (1953). Acta Cryst. 6, 557.
Buerger, M. J. (1947). Amer. Min. 32, 411.
Byström, A. (1945). Ark. Kemi. Min. Geol. 19, 1.
Desborough, G. A. \& Carpenter, R. H. (1965). Econ. Geol. 60, 1431.
Mukherjee, B. (1968). Min. Mag. 36, 661.
Wuensch, B. J. (1963). Min. Soc. Amer. Special paper 1, 157.

The Structure of Copper Ammonium Sulfate Hexahydrate from Neutron-Diffraction Data*

By George M. Brown and R. Chidambaram \dagger
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 8 April 1968)

Abstract

The structure parameters of the Tutton salt $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ have been refined by the method of least squares from three-dimensional neutron-diffraction data. The e.s.d.'s of the atomic coordinates are from 0.0010 to $0.0023 \AA$ for the $\mathrm{N}, \mathrm{S}, \mathrm{O}$ atoms and 0.0025 to $0.0053 \AA$ for the H atoms. The value derived for f_{s}, the coherent scattering amplitude of sulfur, is $0.283(4)$, significantly different from the value 0.31 in Bacon's table; values derived for f_{0} and f_{N} are also slightly different from the tabulated values. Although the heavy-atom coordinates differ significantly in a purely statistical sense from those of the three-dimensional X-ray analysis of Montgomery \& Lingafelter, the two descriptions of the heavy-atom structure agree quite well from the point of view of molecular geometry. The hydrogenbonding pattern from the X -ray study is confirmed.

Introduction

In the last half decade there has been much interest shown, in a number of laboratories, in the crystal structures of Tutton's salts, a well-known series of

[^0]isomorphous double sulfates with the general formula $X Y_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. In an accurate redetermination by X-ray analysis of the structure of $\mathrm{Mg}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}$. $6 \mathrm{H}_{2} \mathrm{O}$, Margulis \& Templeton (1962) were able to locate the hydrogen atoms approximately and to deduce the pattern of hydrogen bonding, after first revising the coordinates of the oxygen atoms from incorrect values reported from the original X-ray determination (Hofmann, 1931). At about the same time and independently, Chidambaram \& Rao (1963) con-

[^0]: * Research sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corporation.
 \dagger Guest scientist 1964-65, sponsored by the United States Agency for International Development, from the Bhabha Atomic Research Centre, Trombay, Bombay-74, India.

